Name _

Sketch each angle in standard position.

Conversions: Write the equivalent quantity in the form indicated.

4. Write in DMS form	5. Write as a degree in decimal form
$\theta = 420.3175^{\circ}$	$\theta = 27^{\circ}39'15''$

6. Convert to radians	
-----------------------	--

 $\theta = 125^{\circ}$

7. Convert to Degrees 25π

$$\theta = \frac{25\pi}{12}$$

Problems.

8. Given a circle with radius 15 cm, find the length of the arc intercepted by a central angle of $\frac{7\pi}{4}$ radians.

9. Given a circle with diameter 10 inches, find the area of the sector created by a central angle of 140°.

10. A Ferris wheel rotates at a rate of 7 revolutions per minute. If the cars on the ride are 40 feet from the center, and calculate each of the following.

- (a) The number of degrees rotated by a person during a 5 minute ride.
- (b) The total distance traveled by a person during a 5 minute ride.
- (c) The angular speed of the ride (in degrees per second)?
- (d) The linear speed of the ride (in feet per second)?

Name _____

Sketch each angle in standard position.

Conversions: Write the equivalent quantity in the form indicated.

3. Write in DMS form	4. Write as a degree in decimal form
$\theta = 84.9823^{\circ}$	$\theta = 36^{\circ}13'41''$

5	Convert	to	radians
э.	CONVENT	ιU	raulalis

6. Convert to Degrees

$$\theta = 510^{\circ} \qquad \qquad \theta = \frac{127\pi}{15}$$

7. Given a circle with an area of 256π in², find the length of the arc intercepted by a central angle of 85°.

8. Given a circle with a <u>circumference</u> of 126 cm, find the area of the sector created by a central angle of $\frac{17\pi}{9}$.

9. The tilt-a-world rotates at rate of 175 revolutions every 5 minutes. If you stand on the edge of the ride which is 68 feet from the center; calculate each of the following.

(a) The angular speed of the ride (in degrees per second)?

(b) The linear speed of the ride (in feet per second)?