Finding sin, cos, tan of anything

What is our ultimate goal?

We want to be able to find the exact value of the sine, cosine, and tangent of certain angles.
How do we do this?

1) Locate where this angle is on the unit circle.
2) Find the reference angle
3) Find the sin, cos, or tan for the reference angle.
4) Determine it's sign by its location.

That's great if the angle we're given is less than 90°. But what if it's greater than 90 ? Or negative? Behold the unit circle!

It is a circle, with radius 1 unit, that is on the $x-y$ coordinate plane.

Cosine of θ : x-coordinate

Sine of θ : y-coordinate

Tangent of $\theta: \frac{y}{x}$

Let's get our bearings straight on the unit circle:
$(\cos \theta, \sin \theta)$

$\operatorname{Sin} 90^{\circ}=1$
$\operatorname{Cos} 270^{\circ}=0$
$\sin 540^{\circ}=\sin 180=0$
$\left(540-360=180^{\circ}\right)$
$\operatorname{Tan} 0^{\circ}=\frac{y}{x}=\frac{0}{1}=0$
$\operatorname{Tan} 90^{\circ}=\frac{y}{x}=\frac{1}{0}$ undefined

Now let's look at angle measures 30, 150, 210, and 330.

They all form a 30° angle with the x-axis, so they should all have the same sine, cosine, and tangent values...only the signs will change!
The angle to the nearest x-axis is called the reference angle. All angles with the same reference angle with have the same trig values except for sign changes.

Remember....Determining sign

Example: Find the sine, cosine, and tangent values of 150°.

Where is 150° ?
It is greater than 90, less than 180, so it is in the $2^{\text {nd }}$ quadrant.

What is the reference angle?
$180-150=30^{\circ}$
Use our 30-60-90 triangle to find values:
$\operatorname{Sin} 30^{\circ}=\frac{1}{2}$
$\operatorname{Cos} 30^{\circ}=\frac{\sqrt{3}}{2}$

$\operatorname{Tan} 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
It is in the second quadrant,
("students") so only Sine is positive.
So my final answers are

$$
\operatorname{Sin} 150^{\circ}=\frac{1}{2} \quad \operatorname{Cos} 150^{\circ}=\frac{-\sqrt{3}}{2} \quad \operatorname{Tan} 150^{\circ}=\frac{-\sqrt{3}}{3}
$$

Example: Find the sine, cosine, and tangent values of 225°.

Where is 225° ?
It is greater than 180, less than 270 , so it is in the $3^{\text {rd }}$ quadrant.

What is the reference angle?
$225-180=45^{\circ}$
Use our 45-45-90 triangle to find values:
$\operatorname{Sin} 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
$\operatorname{Cos} 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
$\operatorname{Tan} 45^{\circ}=\frac{1}{1}=1$

1

It is in the third quadrant, ("take") so only tangent is positive. So my final answers are
$\operatorname{Sin} 225^{\circ}=\frac{-\sqrt{2}}{2} \quad \operatorname{Cos} 225^{\circ}=\frac{-\sqrt{2}}{2} \quad \operatorname{Tan} 225^{\circ}=1$

Example: Find the sine, cosine, and tangent values of 270°.
 Where is 270° ?

It is on an axis, so it is a special case where we need to use the fact that $(x, y)=(\cos \theta, \sin \theta)$.
$\operatorname{Sin} 270^{\circ}=-1$
$\operatorname{Cos} 270^{\circ}=0$
Tan $270^{\circ}=-1 / 0=$ undefined

Example: Find the sine, cosine, and tangent values of 420°.

Where is 420° ?
420 is greater than 360 , so subtract 420 $-360=60.60$ is greater than 0 , less than 90 , so it is in the $1^{\text {st }}$ quadrant.
What is the reference angle?
60°
Use our $30-60-90$ triangle to find values:
$\operatorname{Sin} 60^{\circ}=\frac{\sqrt{3}}{2}$
$\operatorname{Cos} 60^{\circ}=\frac{1}{2}$
$\operatorname{Tan} 60^{\circ}=\frac{\sqrt{3}}{1}=\sqrt{3}$

It is in the first quadrant, ("all") so all values are positive. So my final answers are
$\operatorname{Sin} 420^{\circ}=\frac{\sqrt{3}}{2}$
$\operatorname{Cos} 420^{\circ}=\frac{1}{2}$
$\operatorname{Tan} 420^{\circ}=\sqrt{3}$

