\qquad

1. Write the component form of the vector $P Q$ where $P=(-5,-8)$ and $Q=(12,9)$?
2. Write $\overrightarrow{P Q}$ as a linear combination.
3. Find $|\mid \overrightarrow{P Q} \|$.
4. Find the direction angle for $\overrightarrow{P Q}$.

Use vectors	$\mathbf{u}=\langle 5,12\rangle, \mathbf{v}=\langle-3,8\rangle, \mathbf{w}=\langle 5,4\rangle, \mathbf{f}=\langle-2,-5\rangle, \mathbf{d}=\langle 4,-7\rangle$ to answer \#5-12			
$5 . \mathbf{v}+\mathbf{w}$	$6 .(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$	7. $\|\mid \mathbf{u} \\|$	$8.3 \mathbf{f}-\mathbf{2 d}$	

9. The unit vector in the same direction as \mathbf{v}.
10. The direction angle for f.
11. $\mathrm{f} \cdot \mathrm{d}$
12.The angle between \mathbf{f} and \mathbf{d}.
12. Define: orthogonal (be sure to discuss the dot product)

Use Points $A=(7,2,15), B=(3,-7,-11), C=(-8,2,4), D=(-5,-5,-5)$ to answer \#14-25
Determine the length of each segment.
14. $\overline{A B}$
15. $\overline{B C}$
16. $\overline{C D}$
17. $\overline{A C}$

Determine the midpoint of each segment.
18. $\overline{A B}$
19. $\overline{B C}$
20. $\overline{C D}$
21. $\overline{A C}$

Find the component form of each vector.
22. $\overline{B A}$
23. $\overrightarrow{B C}$
24. $\overrightarrow{D A}$

Determine the angle between the vectors.
25. $\overrightarrow{B A}$ and $\overrightarrow{B C}$

