vocačen do succiono

In Exercises 1-8, use the given vectors to find $\mathbf{v} \cdot \mathbf{w}$ and $\mathbf{v} \cdot \mathbf{v}$.

$$1. y = 3i + j, w = i + 3j$$

2.
$$v = 3i + 3j$$
, $w = i + 4j$

$$3, v = 5i - 4j, w = -2i - j$$
 4. $v = 7i - 2j, w = -3i - j$

$$A \quad v = 7i - 2i \quad w = -3i - i$$

$$5. v = -6i - 5j, w = -10i - 8j$$

$$6. v = -8i - 3j, w = -10i - 5j$$

$$7. v = 5i, w = i$$

8.
$$v = i$$
, $w = -5j$

In Exercises 9-16, let

$$\mathbf{u} = 2\mathbf{i} - \mathbf{j}$$
, $\mathbf{v} = 3\mathbf{i} + \mathbf{j}$, and $\mathbf{w} = \mathbf{i} + 4\mathbf{j}$.

Find each specified scalar.

9.
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})$$

10.
$$\mathbf{v} \cdot (\mathbf{u} + \mathbf{w})$$

11.
$$\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

12.
$$\mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{w}$$

In Exercises 17-22, find the angle between v and w. Round to the nearest tenth of a degree.

17.
$$v = 2i - j$$
, $w = 3i + 4j$

18.
$$v = -2i + 5j$$
, $w = 3i + 6j$

19.
$$v = -3i + 2j$$
, $w = 4i - j$ 20. $v = i + 2j$, $w = 4i - 3j$

$$11. v = 6i, w = 5i + 4i$$

21.
$$v = 6i$$
, $w = 5i + 4j$ 22. $v = 3j$, $w = 4i + 5j$

In Exercises 23–32, use the dot product to determine whether ${f v}$ and ware orthogonal.

$$3. v = i + i \quad w = i - i$$

$$3. v = i + j, w = i - j$$
 24. $v = i + j, w = -i + j$

25.
$$y = 2i + 8j$$
, $w = 4i - j$

26.
$$v = 8i - 4j$$
, $w = -6i - 12j$

$$\eta$$
. $\mathbf{v} = 2\mathbf{i} - 2\mathbf{j}$, $\mathbf{w} = -\mathbf{i} + \mathbf{j}$

18
. $y = 5i - 5j$, $w = i - j$

29
, $y = 3i$, $w = -4i$

30.
$$v = 5i$$
, $w = -6i$

$$31, v = 3i, w = -4i$$

32.
$$v = 5i$$
, $w = -6i$

In Exercises 33-38, find projwv. Then decompose v into two vectors, 1 and v_2 , where v_1 is parallel to w and v_2 is orthogonal to w.

$$3i \cdot v = 3i - 2j, \quad w = i - j$$
 34. $v = 3i - 2j, \quad w = 2i + j$

34.
$$v = 3i - 2i$$
, $w = 2i +$

35.
$$v = i + 3j$$
, $w = -2i + 5i$

36.
$$v = 2i + 4j$$
, $w = -3i + 6j$

37.
$$v = i + 2i$$
 $w = 3i + 6i$

37.
$$v = i + 2j$$
, $w = 3i + 6j$ 38. $v = 2i + j$, $w = 6i + 3j$

Precies Pos

In Exercises 39-42, let

$$\mathbf{u} = -\mathbf{i} + \mathbf{j}$$
, $\mathbf{v} = 3\mathbf{i} - 2\mathbf{j}$, and $\mathbf{w} = -5\mathbf{j}$

Find each specified scalar or vector.

39.
$$5u \cdot (3v - 4w)$$

40.
$$4u \cdot (5v - 3w)$$

41.
$$proj_u(v + w)$$

42.
$$proj_u(v - w)$$

In Exercises 43-44, find the angle, in degrees, between v and w.

43.
$$\mathbf{v} = 2\cos\frac{4\pi}{3}\mathbf{i} + 2\sin\frac{4\pi}{3}\mathbf{j}, \quad \mathbf{w} = 3\cos\frac{3\pi}{2}\mathbf{i} + 3\sin\frac{3\pi}{2}\mathbf{j}$$

44.
$$\mathbf{v} = 3\cos\frac{5\pi}{3}\mathbf{i} + 3\sin\frac{5\pi}{3}\mathbf{j}$$
, $\mathbf{w} = 2\cos\pi\mathbf{i} + 2\sin\pi\mathbf{j}$

In Exercises 45-50, determine whether v and w are parallel. orthogonal, or neither.

45.
$$v = 3i - 5j$$
, $w = 6i - 10j$

46.
$$v = -2i + 3j$$
, $w = -6i + 9j$

47.
$$v = 3i - 5j$$
, $w = 6i + 10j$

48.
$$\mathbf{v} = -2\mathbf{i} + 3\mathbf{j}, \quad \mathbf{w} = -6\mathbf{i} - 9\mathbf{j}$$

49.
$$v = 3i - 5j$$
, $w = 6i + \frac{18}{5}j$

50.
$$v = -2i + 3j$$
, $w = -6i - 4j$

Application Exercises

- 51. The components of v = 240i + 300j represent the respective number of gallons of regular and premium gas sold at a station. The components of w = 2.90i + 3.07i represent the respective prices per gallon for each kind of gas. Find $\mathbf{v} \cdot \mathbf{w}$ and describe what the answer means in practical terms.
- 52. The components of v = 180i + 450j represent the respective number of one-day and three-day videos rented from a video store. The components of w = 3i + 2j represent the prices to rent the one-day and three-day videos, respectively. Find v · w and describe what the answer means in practical terms.
- 53. Find the work done in pushing a car along a level road from point A to point B, 80 feet from A, while exerting a constant force of 95 pounds. Round to the nearest foot-pound.
- 54. Find the work done when a crane lifts a 6000-pound boulder through a vertical distance of 12 feet. Round to the nearest foot-pound.
- 55. A wagon is pulled along level ground by exerting a force of 40 pounds on a handle that makes an angle of 32° with the horizontal. How much work is done pulling the wagon 100 feet? Round to the nearest foot-pound.
- 56. A wagon is pulled along level ground by exerting a force of 25 pounds on a handle that makes an angle of 38° with the horizontal. How much work is done pulling the wagon 100 feet? Round to the nearest foot-pound.
- 57. A force of 60 pounds on a rope is used to pull a box up a ramp inclined at 12° from the horizontal. The figure shows that the rope forms an angle of 38° with the horizontal. How much work is done pulling the box 20 feet along the ramp?

58. A force of 80 pounds on a rope is used to pull a box up a ramp inclined at 10° from the horizontal. The rope forms an angle of 33° with the horizontal. How much work is done pulling the box 25 feet along the ramp?